2023

MATHEMATICS — GENERAL

Paper: SEC-B-2

(Boolean Algebra)

Full Marks: 80

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Group - A

(Marks: 20)

1. Choose the correct option and justify your answer:

 $(1+1)\times10$

- (a) Let $S = \{1,2,3\}$ and consider the relation $R = \{(1,1), (3,3)\}$ on S. Then R is
 - (i) symmetric and but not anti-symmetric
 - (ii) anti-symmetric and but not symmetric
 - (iii) symmetric as well as anti-symmetric
 - (iv) neither symmetric nor anti-symmetric.
- (b) Consider the poset (N, \leq) . This poset has
 - (i) minimal element but no maximal element
 - (ii) maximal element but no minimal element
 - (iii) both minimal element and maximal element
 - (iv) neither minimal element nor maximal element.
- (c) It is false that from a Hasse diagram of some poset
 - (i) minimal element(s) can be determined
 - (ii) maximal element(s) can be determined
 - (iii) both maximum and minimum element(s) can be determined
 - (iv) maximum and minimum element(s) can never be determined.
- (d) Let (B, \land, \lor) be a lattice and $a, b, c \in B$. Then dual of $a \land (b \lor c) = (a \land b) \lor (a \land c)$ is
 - (i) $a \wedge (b \vee c) = (a \wedge b) \wedge (a \wedge c)$ (ii) $a \wedge (b \wedge c) = (a \wedge b) \vee (a \wedge c)$

 - (iii) $a \lor (b \land c) = (a \lor b) \land (a \lor c)$ (iv) $a \lor (b \lor c) = (a \land b) \lor (a \lor c)$.
- (e) A poset S is lattice if every pair of elements of its has
 - (i) greatest lower bound in S
- (ii) greatest lower bound and lowest upper bound in S
- (iii) greatest and lowest element in S (iv) maximal and minimal elements in S.

Please Turn Over

- (f) Let N be ordered by divisibility. Which subset of N is not linear (totally) order
 - (i) {24, 2, 4}

(ii) N

(iii) {2, 8, 32, 4}

- (iv) {7}.
- (g) In the Boolean Algebra which one of the following is not true?
 - (i) a + a = a

(ii) a + 1 = 0

(iii) a.(a + b) = a

- (iv) (a+b)' = a'.b'.
- (h) The complement of (x'+y)(x'+y') is
 - (i) (x + y)(x + y')

(ii) x

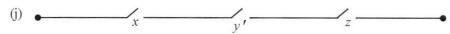
(iii) (x' + y')y'

- (iv) None of these.
- (i) Let $(B, +, \cdot, ')$ be a Boolean Algebra and $a, b \in B$. Then $a + (a' \cdot b) =$
 - (i) a+b

(ii) a+b'

(iii) a' + b

(iv) $a \cdot b$.



Boolean expression corresponding to the above circuit is written as

(i) xyz

(ii) xy'z

(iii) x + y + z

(iv) x + y' + z.

Group - B

(Marks: 60)

Answer any six questions.

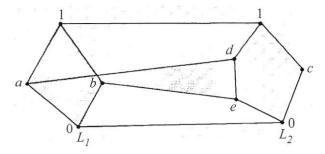
- 2. (a) Define maximal and minimal element in a poset.
 - (b) Draw the Hasse diagram of the poset (S, \leq) , where $S = \{4, 12, 24, 48, 72\}$ and $a \leq b$ means a divides b for all $a, b \in S$. Find the greatest element (if exists) and least element (if exists) in (S, \leq) .
 - (c) Let $S = \{1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60\}$ and consider the poset (S, \leq) , where $a \leq b$ iff a divides b for all $a, b \in S$. Find the upper bound(s) and least upper bound of the set $\{6, 15\}$ in (S, \leq) .
- 3. (a) Define distributive lattice.
 - (b) Let S be the set of all positive divisors of 20 and a partial order relation \leq is defined on S by $a \leq b$ iff a divides b. Examine whether (S, \leq) is a distributive lattice.
 - (c) Let (L, \wedge, \vee) be a distributive lattice and $a, b, c \in L$.

Prove that $a \wedge c = b \wedge c$ and $a \vee c = b \vee c \implies b = a$.

- 4. (a) Define Complete lattice. Prove that dual of a complete lattice is complete.
 - (b) Show that (D_{30}, \leq) is a lattice. Find all sublattices of (D_{30}, \leq) .
 - (c) Prove that every finite lattice is bounded.

(1+3)+(2+2)+2

- 5. (a) Prove that $\mathbb{N} \times \mathbb{N}$ is moduler lattice, where \mathbb{N} is the chain of naturals under usual \leq .
 - (b) Define homomorphism between two lattices.
 - (c) Let us consider the mapping $\psi:(L_1,\wedge,\vee)\to(L_2,\wedge,\vee)$, where $L_1=\{0,a,b,1\}$ and $L_2=\{0,c,d,e,1\}$ be two lattices and ψ be defined as



Show that ψ is homomorphism.

3+2+5

6. (a) From the following truth table write F in DNF and then simplify using Karnaugh Map:

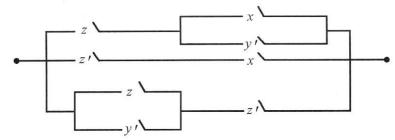
x	у	z	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

(b) Using Karnaugh Map find a minimal sum for

$$E = y't' + y'z't + x'y'zt + yzt'.$$

(2+3)+5

7. (a) Find a simpler equivalent circuit for the following:



(b) Find a switching circuit which realizes the switching function f given by the following switching table:

х	y	z	f(x,y,z)
1	1	1	1
1	1	0	1
1	0	1	0
1	0	0	0
0	1	1	0
0	1	0	0
0	0	1	1
0	0	0	1

5+5

- **8.** (a) A committee consisting of three members approves any proposal by majority vote. Each member can approve a proposal by pressing a button attached to their seats. Design as simple a circuit as you can which will allow current to pass when and only when a proposal is approved.
 - (b) Construct a truth table for the Boolean expression: xy' + y(x' + z) + z. 5+5
- 9. (a) Prove that the following three expressions are equal:

(i)
$$(a+b)(a'+c)(b+c)$$

(ii)
$$ac + a'b + bc$$

(iii)
$$(a + b)(a' + c)$$
.

(b) What is Boolean polynomial? Give an example of Boolean polynomial.

6+(2+2)

- 10. (a) Let (S, \leq) be a poset and $a, b \in S$. Prove that $a \vee b = b$ iff $a \wedge b = a$.
 - (b) Let (L, \leq) be a lattice and $a, b \in L$. Show that $a \land (a \lor b) = a$.
 - (c) Give one example of a poset, where there are more than one minimal elements but no smallest element. 4+3+3